
Apple IIGS
#75: BeginUpdate Anomaly 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#75: BeginUpdate Anomaly
Revised by: Dave Lyons May 1992
Written by: Eric Soldan January 1990

This Technical Note discusses a Window Manager anomaly with the handling of the visRgn and
the updateRgn between BeginUpdate and EndUpdate calls.
Changes since January 1990: Updated for System 6.0. CopyPixels is in a static segment,
and GS/OS automatically prompts for disks on the text screen when necessary to avoid interfering
with a window update in progress.

If an application calls BeginUpdate, it needs to be fully aware of what is going on behind the
scenes in terms of its visRgn and updateRgn. Typically an application has TaskMaster
handle the update events. TaskMaster calls BeginUpdate, the application update procedure,
then EndUpdate. So any application that uses TaskMaster to handle updates, whether or not it
makes any BeginUpdate calls directly, needs to be aware of problem described in this Note.

BeginUpdate is responsible for intersecting the visRgn and the updateRgn and making the
intersection of these two regions the temporary visRgn. (EndUpdate undoes this effect.)
Following are the steps BeginUpdate takes to do this:

1. Localize the updateRgn. (All grafPort regions are local, therefore the
visRgn is local. All window regions are global, therefore the updateRgn is
global. One of them has to change if they are to be intersected correctly.)

2. Intersect the visRgn and localized updateRgn, then place the result in the
updateRgn.

3. Swap the visRgn and updateRgn handles.

The handle swapping has two effects:

• Makes the intersection region the current visRgn.
• Saves the real visRgn as the updateRgn. (Saving the real visRgn is

necessary because everything has to be restored to normal by EndUpdate.)

EndUpdate restores things to normal after an update procedure is finished. When an application
calls EndUpdate, it swaps back the handles and sets the updateRgn to empty.

Apple II Technical Notes

2 of 4 #75: BeginUpdate Anomaly

So What’s the Problem?

The problem is that the updateRgn is not a very good place to save the visRgn. Since
InvalRect and InvalRgn modify the updateRgn, if either of these two calls is made between
a BeginUpdate and EndUpdate, they modify the saved visRgn. When the update is finished,
EndUpdate restores the modified visRgn instead of the original.

The solution to this problem seems simple enough: don’t call InvalRect or InvalRgn
between BeginUpdate and EndUpdate. Unfortunately, there are other calls which can call
BeginUpdate, EndUpdate, InvalRect, and InvalRgn, so an application might
inadvertently call one of these routines.

If this situation isn’t bad enough already, you could really mess things up by opening another
window between BeginUpdate and EndUpdate calls. Opening a window at this time may
seem like a perfectly normal thing (i.e., to display an alert); however, opening a window forces the
recalculation of the visRgn for any windows obscured by the new window. If the window being
updated has its visRgn recalculated, the application obviously loses the visRgn that
BeginUpdate created. This doesn’t seem too serious since the visRgn is restored to the entire
visible part of the window when the new window is closed; however, it does mean that the
application would have to update the entire window instead of the original updateRgn.

Unfortunately, the Window Manager also posts update events for the portion of the window that
was obscured, and it does this by changing the updateRgn. Of course the updateRgn for the
window being updated is really the visRgn that is being “safely” preserved until the
EndUpdate call. So, there are some really good reasons why this can’t be done.

Okay, so along with not making calls to InvalRect and InvalRgn between BeginUpdate
and EndUpdate, an application cannot open any other windows either. Good.

Now to make things even worse.

Starting with System 5.0, some toolbox functions are stored on disk in dynamic segments and
loaded when they are first called. For example, CopyPixels is in a dynamic segment in System
versions 5.0 through 5.0.3. If the startup disk is not available and the system prompts for it
between BeginUpdate and EndUpdate by calling AlertWindow, the bad things discussed
above happen.

Starting with System 6.0, the system is smart enough not to prompt for a disk using
AlertWindow if a window update is in progress. (Internally, GS/OS calls WindStatus to see
if it can prompt on the graphics screen. If BeginUpdate has been called more times than
EndUpdate, WindStatus fibs by returning with the carry set. GS/OS takes the hint and
prompts for the disk with a text dialog instead.)

Developer Technical Support May 1992

Apple IIGS
#75: BeginUpdate Anomaly 3 of 4

But I Have to Do…

If you absolutely must do some of the things previously discussed, there is a way to accomplish it.
It is not simple, but it can be done.

Assuming that BeginUpdate has been called, and an application is in its update procedure:

1. Create a new region and copy the visRgn into it. Doing this allows the application
to restore the visRgn to just the area to be updated that BeginUpdate calculated.
This needs to be done for any other windows which obscure a part the the window
being updated. Again, these are not windows that an application would open
directly. CopyPixels may open a window, since it is a dynamic segment and may
need to get loaded from a disk that is off-line.

2. Create a new region, then swap its handle with the updateRgn handle. This
protects the real visRgn and lets an application call InvalRect and InvalRgn
at any time if necessary. It also means the application doesn’t need to worry about
the system making these calls either. The updateRgn is also an empty region
after the swap, so any contributions to it constitute a valid update event that needs to
be handled.

3. Do the update part of the update procedure. In this part, if the application has any
calls to CopyPixels, or any other QuickDraw Auxiliary dynamic segment
functions, after the call is completed, copy the saved visRgn back to the visRgn
of the grafPort. The closing of the dynamic segment alert window recalculates
the visRgn, and copying it undoes this effect. Do not do the same for the
updateRgn. Leave the updateRgn alone. We are accumulating an actual
updateRgn, and the closing of the alert window for the dynamic segment may
have contributed to this region.

There are two methods for leaving the update procedure. Although the second method works
whether or not an application uses TaskMaster, if an application does not use TaskMaster,
then the first method is simpler.

The procedure without using TaskMaster (i.e., you made the BeginUpdate call, and you will
make the EndUpdate call) is as follows:

A. Dispose of the region created in Step 1. This region was only needed to restore the
partial visRgn that BeginUpdate calculated after a window was opened.

B. Swap the updateRgn handle with the region handle created in Step 2.
C. Make the EndUpdate call.
D. If the region created in Step 2 is not empty, copy this region into the updateRgn

for the window with CopyRgn. You can’t just do an InvalRgn with it because
InvalRgn globalizes the region and the region is already global. You want to
copy the region since this generates a valid update event. You can use CopyRgn
instead of UnionRgn because the update region is empty.

E. Dispose of the region created in Step 2.

With TaskMaster, things are a little messier. Since TaskMaster makes the EndUpdate call,
you have less control over the situation. It is important to do the EndUpdate before generating
the update event. Posting the update event has to happen outside the update procedure, since you
have to leave the update procedure for TaskMaster to do the EndUpdate. So it follows that
you do Steps A and B, post an application event to handle the rest externally, and when the
application event is handled, do Steps D and E.

Apple II Technical Notes

4 of 4 #75: BeginUpdate Anomaly

Some consideration was given to posting an application event via the PostEvent call.
Unfortunately, there is a possibility that this application event will drop out of the queue not
handled. When the queue is full, the oldest event is dropped, and this could occur to application
events, which would be very bad in this case. Due to this possibility, posting an application event
refers to setting a global variable that is checked before the TaskMaster call in the main event
loop. This can be considered equivalent to posting an event via the PostEvent call.

So, the TaskMaster case would be as follows:

A. Dispose of the region created in Step 1.
B. Swap the updateRgn handle with the region handle created in Step 2.
C. Store the handle of the region created in Step 2 in a global variable named

eventUpdateRgn. Store the current window port in a global variable named
eventWindowPort.

D. Return to TaskMaster, which returns to the main event loop.
E. Immediately after the TaskMaster call in the main event loop, check the global

variable eventUpdateRgn. If it is not NULL then:
a. Copy the region into the updateRgn of the window eventWindowPort.

Using CopyRgn is the easiest way to copy the region. (Copying the region
posts an update event if the event UpdateRgn is not NULL.

b. Dispose of the region eventUpdateRgn, then set the variable
eventUpdateRgn to NULL, so that this “event” won’t be handled again.

Of course, the simplest way to handle all of this is to avoid situations where you have to take the
steps described above. If things like opening a window (or allowing the system to open one) and
InvalRect and InvalRgn can be avoided between calls to BeginUpdate and EndUpdate,
so can all of this ugliness.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

